
N8 7- 26 556

RAY TRACING ON THE MPP

John E. Dorband

Image Analysis Facility/635
NASA/Goddard Space Flight Center

Greenbelt, MD 20771

ABSTRACT

Generating graphics to faithfully represent
information can be a computationally intensive

task. We will present a way of using the MPP to
generate images by ray tracing. This technique
uses sort computation, a method of performing
generalized routing interspersed with computation
on a single-instruction-multiple-data (SIMD)
computer.

Keywords: Ray Tracing, Graphic Generation, Sort
Computation, SIMD, MPP.

hardware, along with more efficient algorithms, are
needed to place this capability within the reach of
most researchers.

The most versatile and realistic means of generating
images of objects in three-dimensional space is ray
tracing. Ray tracing generates images by
simulating the movement of light rays in the three-
dimensional space containing the objects to be
displayed. Ray tracing is, however,
computationally intensive making it both slow
and expensive when the three-dimensional space
holds many complex objects and especially when
animated sequences composed of many images
must be generated.

INTRODUCTION

New ways of representing data must be developed
so that researchers can most effectively focus their

time and effort in exploring the ever increasing
volume and complexity of data that they acquire and
generate.

Since computers are not yet able to discover

knowledge for which no description has been given,
we must rely on the cognitive abilities of the
researcher to recognize undiscovered characteristics
of the data. Tools are needed that extend the senses

of the researcher deeper into the data he is studying.
Just as a telescope allows an astronomer to visually
search deep into the universe, so a computer allows
a researcher to visually study data in regions that
could not be explored through mere imagination.

Computer-assisted perception is one of the most
valuable aspects of man-machine interaction, but
the amount of information that needs to be
transferred between man and machine for human

perception to be effectively extended is huge. The
visual interface between man and machine has the

greatest potential for satisfying this requirement,
but a fast and efficient means of converting logical
information into visual information needs to be

developed. Faster and less expensive computer

An experimental computer architecture termed
single-instruction-multiple-data (SIMD) is being
investigated at NASA's Goddard Space Flight
Center. SIMD architectures show promise of
delivering enormous computational power at less
cost than other existing architectures. The Goddard
prototype, the Massively Parallel Processor (MPP),
has a computational element consisting of a 128 by
128 array of small computers.

It had been recognized that ray tracing, which
requires the use of irregular data arrangements,
could not be performed easily on the SIMD
architecture. This has changed with the recent

development of a technique called sort computation
(Ref. 1), which uses the regular SIMD computer
architecture to process irregular data arrangements
more efficiently than was previously thought
possible. With sort computation, the MPP can be
used to start developing ray tracing as a method of

rendering images of objects placed in three-
dimensional space.

Sort computation is standard sorting with a twist
provided by an enhancement to the usual
comparison step in the sort. The enhancement
performs computation during the sort. The kinds
of computation that can be performed include
aggregation and distribution type operations on sets
of data records whose key values are the same. The
routing mechanism of the sort guarantees that the
right data will be brought together at the right time

?_EDING PAGE BLANK NOT F_

211



to accomplish the computation without the
programmer's a priori knowledge of where the data
was before the computation or where it will be after
the computation. This makes it easy to process
irregularly arranged data.

Our initial step toward implementing ray tracing on
the MPP was the development of a utility that
allows a researcher to view a topographical map in
three-dimensional space from any perspective. The

map is a 512 by 512 grid of elevation points.
These points are initially plotted in three-
dimensional space. Then the intersection of the
viewing screen with light rays from the view point
to each point in the map is calculated. It is then
known where all points will be seen on the
viewing screen. A sort computation operation, sort
minimum, is then used to determine which points
are not hidden by other points. Sort minimum
finds the closest point on the elevation map to the
view point for each position in the viewing screen.
Finally, the brightness values of those points that
are not hidden are copied to their proper position in
the viewing screen, using sort distribution.

This utility, run on the MPP, takes 3.5 seconds to
generate an image of 262,144 elevation points. It
was implemented on the MPP by a Code 635
summer student. Jennifer Trainor (see Figure I ,
Color Plate IV ), and is being used to view
elevation maps generated from Shuttle Imaging

Radar-B (SIR-B) images by Dr. James Strong
(Code 636).

SORT COMPUTATION

To truly understand how ray tracing is
accomplished on the MPP one must understand sort
computation. Computation in general requires
both the ability to manipulate elements of data
based on the values of other elements of data and

the ability to route these elements of data to places
where they can affect each other. Sort computation
uses sorting as a routing mechanism to support
interspersed routing and data manipulation. Sort
aggregation and sort distribution are the two basic
forms of sort computation. Sort computation is
performed on sets of records, grouped according to a
key contained in each record. Groups of records
contain only records that have been determined by
some function to be equal.

Sort aggregation generates an accumulative result

for each group of records and places this result in
one of the records. Usually it is placed in the first
record or the record with the smallest key value.

212

The accumulation operation can be any operation
that is both associative and commutative. That is

any operation for which the result is not dependent
on the order of the operand or the order in which the
operations will be performed. Addition,
multiplication, and, or, and exclusive-or are
examples of valid operations.

Sort distribution copies the value of a field of a

specific record in a group into that field in every
record of that group. The record that contains the

value to be distributed contains a flag that is set to
true, indicating that this record contains the value
that is to be copied into all other records of that
group. Note that there may be more than one

record in a group for which the flag is set, as long
as they contain the same value in the field that is to
be distributed.

Sort computation is really quite simple. First, we
must view a sorting algorithm as having two parts,
the comparison of records and the routing of
records. The comparison of records results in a
determination of which of two records being
compared is larger. The routing of records takes the
result of the comparison and determines where each

of the records are to go for their next comparison.
Thus, the sort can be viewed as a routing routine
and a comparison routine, where the routing routine
calls the comparison routine when necessary. All
sorts consist of these two parts. Sort computation

can use the routing part of any sort algorithm. The
comparison routine is replaced depending on what
type of computation is to be performed.

The routing routine only determines the order in
which the record will end after the sort is through,
not how they will be modified. The comparison

routine contains all the code that makes any sort
computation different from another in terms of how
the contents of the records are changed. The
comparison routine has two functions. One
function is to determine if the two records being
compared are in the same group, generally whether
or not their keys are equal, and whether a record
from one group will come before or after a record
from another group. The other function is to
modify the records if they both belong to the same

group.

SORT AGGREGATION

Pseudo code will be used to describe the following
algorithms. The expression "A[5].(B,C,D)" will
define an array of 5 records, where each record has 3
fields, B, C, and D.



Forthesakeof simplicitywewill justshowthat
sort summingworks. Notethat theaddition
operationcanbe replacedby anyothervalid
aggregate operation. The command
"SORT(SUM,A)"performsthesortsumoverthe
arrayAdefinedby"A[n].(K,V)".

booleanfunctionSUM(AI,A2)
givenAI.(K,V)
givenA2.(K,V)
if A1.K=A2.Kthen

A1.V=A1.V+ A2.V
A2.V = 0

return(true)
end if

if A1.K < A2.K then

return(true)
end if

if A1.K > A2.K then

return(false)
end if

end function

Figure 1. Sum routine

SUM (Figure 1) is the comparison routine which
will, when used in conjunction with SORT, sum
all the values in field V of the records for which the
K fields are equal. SUM returns a value true if the
records A1 and A2 are in the correct order and false

if they are not. SUM will put the sum of all the V
fields of records of the same group in the first (or
smallest) record in the group.

The proof that this will work as described goes as
follows. Even though the keys of the records we
are comparing may be equal, SUM can affect their

ordering by returning to the routing routine the
response that either the records are in the correct

order (true) or not (false). This in effect gives order
within a group. SUM always designates the record
that contains the result of the sum as the smaller of
the two records and the larger of the two records
contains a value of zero. This means that the sum

of the value fields of the records of a group will be
contained in the record that was designated smaller
than all other records of that group. Let us assume,

however, that not all values of records in a specific
group were summed into the same record. This

means that at least two records contain only part of
the result for that group. Each one of these records
would have been designated less than all records of
that group to which it was compared. Yet, the
records which contained partial results must not
have been compared to any one of the others or the

partial results would have been summed into one of
the two records. Thus, each one of the records

would have been designated the smallest record of
the group. Since there is only one smallest record
of a group, there can only be one record that
contains the result for any group.

A routine corresponding to SUM can be writen for
any operation that is both associative and
commutative, as described above.

boolean function COPY(A1,A2)
given AI.(K,F,V)
given A2.(K,F,V)
if A1.K = A2.K then

if A2.F then

A1.V = A2.V
A1.V = true

return(true)
end if

if A1.F then
A2.V = A1.V
A2.V = true

retum(true)
endif

else

reatm(u'ue)
endif

if A1.K < A2.K then

retum(true)
end if

if A1.K > A2.K then

return(false)
endif

end function

Figure 2. Copy routine

SORT DISTRIBUTION

Sort distribution is slightly more complex than
sort aggregation. The idea in sort distribution is to
copy the value of a record in a group of records,
which has been flagged as having a valid value for
that group, to all records that do not already have
that value. The command to perform this would be
"SORT(COPY,A)", where SORT is the routing
routine, COPY is the comparison routine, and A is
the array of records. This array of n records is of
the form "A(n).(K,F,V)", where K is the key, F is
the valid value flag, and V is the value field.
COPY used in conjunction with SORT distributes
the correct value for each group to all members of

217



the group (see Figure 2). Like SUM, COPY
returns a value true if the records A1 and A2 are in

the correct order and false if they are not. COPY
puts the same value in all records of the same
group or no value at all if no record of the group
had its valid value flag set prior to performing the
distribution.

The proof that distribution works is similar to that
of aggregation. Note that when two records are
determined to be in the same group and one of the
records contains a valid value, it is copied to the
other record and its valid value flag is set. This in
effect cause the record with a valid value to be

considered both larger and smaller than a record that
does not have a valid value. Thus, at the

completion of the sort computation, at least the
largest and smallest record of each group that had a
record with a valid value, will contain a valid value.
Assume that a record without a valid value
remained so after the sort was complete. If it was
either the largest or the smallest record of the

group, then there must not have been a record in
the group that had a valid value. If it was not the
smallest or the largest value of the group, either
there was no record in the group with a valid value
or it was not compared to a record in the group
with a valid value. If there is a record without a
valid value and one with a valid value in the same

group, there is such a pair that is logically next to
each other that has never been compared. If such a

pair exists, there is no way of knowing which one
is larger, since they have never been compared.
Thus, the sort must not have been complete.

Therefore, a record can only be left without a valid
value after the sort is complete if there were no
records in its group with a valid value.

RAY TRACING BY PARALLEL
RECURSIVE SUB-DIVIDING OF SPACE

Originally, ray-tracing algorithms were based on an
approach that compared each object with each ray to
determine whether the ray intersected the object.
More recently, the viewing space has been divided
into varying size regions depending on how many
objects are in the region (Ref. 2-6). If the region
has too many objects in it, it is divided into

smaller regions. The rays are traced through the
regions until they intersect an object. This sub-
dividing of space is done prior to the actual ray-
tracing. The collection (a hierarchy) of regions is
stored as a structure to be searched during the actual

ray tracing.

214

We recursively subdivide space during ray tracing;
therefore we do not have to either store or search

the hierarchy of subdivided regions. We also do not
actually compare rays to objects to find their
intersection, but determine the intersection of

subdivided regions (cells) and rays and the
intersections of cells and objects. When divided
each cell is split into eight subcells of equal size.
If a cell does not both intersect a ray and an object
it is deleted. Thus, all further processing associated
with that cell is terminated. As each remaining cell
is subdivided into smaller cells, the only cells that
remain are those that intersect at least one ray and
one object. The cells are subdivided until the cross-
section of the subcell is smaller than some

specified fraction of the area that can be viewed
through a pixel of the viewing screen.

The position of the intersection of the object and
the ray can either be taken as the center of the cell
that they both intersect or a more accurate
determination of the intersection can be calculated

from the analytic description of the object and the
ray. Once the intersection of the ray and the object
has been determined, reflected or refracted rays may
be calculated if further generations of rays are to be
simulated, or a brightness value for the ray can be
calculated. All ray/object intersections of a
generation of rays are calculated before any
intersection of the next generation.

This is a highly parallel algorithm since there is no
interaction between processing of neighboring
cells. The only global processing required is the
determination and deletion of all cells that do not

intersect both a ray and an object.

The algorithm initially starts with a set of rays and
a set of objects. This set of rays usually start at a
view point and each ray intersects a simulated
viewing screen at different pixel positions.

For the sake of this discussion, we will assume

that all computation can be contained within the
processor array. In reality data must be swapped to
and from the staging memory.

We start with an initial cell that contains all the

objects. Each processor holds the description of a
ray and an object that have no relation to each
other. First it is determined which rays intersect
the cell. These rays are then sorted to a region of
the array of processors. The remaining rays are
considered to be deleted. The same thing is done
with the objects. This makes more efficient use of

the processors when the ray descriptions are
duplicated and moved to processors not being used.
At this point there will probably be both rays and



objects left, so there will be no reason to delete the
only cell.

Each ray and object will be duplicated eight times,
moved to different processors, and paired up with
one of the eight subcells of the initial cell. For
each ray/cell pair, it will be determined if the ray
and the cell intersect. If they do not, then the
ray/cell pair will deleted. The same will be done
with object/cell pairs.

Deletion of ceils that do not intersect both a ray and
an object can be handled by the application of sort-
computation. This is done by creating two types
of records, ray/cell and object/cell, that will be
sorted together using a sort distribution operation.
Each record will consist of a key field and two flag
fields, the ray and the object flag. The key field
contains the ID of the cell that intersects the ray or
the object. The ray flag is true if the record is a
ray/cell record and the object flag is true if the
record is an object/cell record. During the sort
distribution operation all the ray flags will be anded
together for all records with the same key values.
This also happens with the object flags. Therefore
any cell that has a record that does not have both
the ray flag and the object flag set will be deleted.
This cycle of dividing cells and deleting ray/cell and
object/cell pairs is repeated until the desired
intersection accuracy has been obtained. At this
point, object descriptions are distributed to where
ray descriptions are, based on the common cells
that they intersect. The result is a list of all
intersections of rays and objects.

The actual implementation on the MPP uses a

16,384 element-wide stack stored in the staging
memory, which is manipulated within the array
memory of the MPP. The feasibility of the
algorithm was demonstrated by James Hurst on a
VAX-11/780 and is being implemented on the
MPP.

Additional work needs to done to eliminate

unnecessary computation, but this is the first step
in the parallelizing of ray tracing on a SIMD
architecture.

.

.

.

,

.

Glassner, Andrew S., "Space Subdivision
for Fast Ray Tracing," IEEE CG&A, Vol.
4, No. 10, Oct. 1984, pp. 15-22.

Kajiya, James T., "SIGGRAPH 83

Tutorial on Ray Tracing," Proc.
SIGGRAPH83, Course 10 Notes, 1983.

Kaplan, Michael R., "The Uses of Spatial
Coherence in Ray Tracing," A CM

SIGGRAPH '85 Course Notes 11, July
22-26 1985.

Kay, Timothy L. and James T. Kajiya,
"Ray Tracing Complex Scenes," ACM
SIGGRAPH "86 Proc., Vol. 20, No. 4,
Aug. 1986, pp. 269-276.

Rubin, Steven M. and Turner Whitted, "A
3-Dimensional Representation for Fast
Rendering of Complex Scenes," Computer
Graphics 14(3), July 1980, pp. 110-116.

REFERENCES

. Dorband, John E., "Sort Computation and
Conservative Image Registration," Ph.D.
thesis, Pennsylvania State Univ.,
December 1985.

215


